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An explicit method is formulated for solving the scalar wave equation using finite differences 
in isotrcpic, inhomogeneous media. Estrapolation from the knovvn grid-plane to the unknown 
grid-plane is in depth so that the rinal result represents an image of the medium’s true sparia! 
structure. This image is often used to predict favorable locations for drilling into !he earth. 
This paper determines equations for the depth differencing coefficients and the tatera: differen- 
cing coefftcieats of a polynomial series solution to the wave equation. i 19W -\cadsnic Prssr. Inc. 

INTRODUCTION 

Solving the scalar wave equation in isotropic. inhomogeneous media is 
fundamental in the study of seismology. Several methods have been developed to 

solve this problem. Among these are the reflectivity method [ I]. the generalized ray 
method [Z], the ray series method [3. 41. finite-element methods [S-7], and fimte- 

difference methods [S-14]. 

Using finite differences, the scalar wave equation can be soived explicitly or 
implicitly. Starting from a number of data points in the known (data acquisition) 

plane. the explicit method determines information about one point in the unknown 

plane, whereas the implicit method generates coupled information about a number 
of points in the unknown plane. The coupled information must be unscrambled by 

a matrix inversion in order to determine specific values at each point in the 
unknown plane [lS]. Stable explicit methods are much cheaper (3 to 6 times) than 
implicit methods. This paper deals with an exphcit finite-difference solution to the 
scalar wave equation with variable velocity. 

FORMULATION OF THE PROBLEM 

When a geophysical problem is described by the wave equation, solution usuahy 
involves extrapolating wavefields in time or depth. The procedure depends on how 
we express the partial derivatives of the upward and downward propagating waves. 
Modeling implies the extrapolation of waves ~&WY& in time or depth through a 
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given velocity structure. Migration is the inverse of this procedure, extrapolation of 
recorded wavefields backyard in time or depth through an estimated velocity struc- 
ture. I will consider the inverse problem in this paper. The forward problem can be 
formulated from this solution by changing all the signs in front of the depth z to 
the opposite sign. 

Let us start with a recorded wavefield R(x , Z, t), which could represent pressure, 
displacement, etc., and which obeys the two-dimensional scalar wave equation 

where the subscripts denote partial derivatives. The factor of 4 comes from applying 
the exploding reflector model. Although a stacked seismic section is produced by 
the upward reflection and diffraction of originally downgoing waves, simplistic 
considerations permit us to visualize it as a superposition of just upward traveling 
waves. This is done by making the following two assumptions: (1) replace the travel 
path from source to reflector to receiver with a travel path from reflector to receiver 
only and (2) replace the medium velocity v by 0/2. The velocity is a function of ,Y 
and I. The time coordinate is Fourier transformed to angular frequency, so that 

R(.u, 7, t) -+ R(s, z, co), (2) 

where R(x, Z, w) obeys the equation 

R,, + RZ, + $ R = 0. 

The main advantages of transforming to frequency are (a) each frequency can be 
propagated separately, which can simplify analysis of large data sets and (b) time 
shifts over noninteger numbers of sampling intervals and all time derivatives are 
replaced by simple multiplications. 

A coordinate transformation to a retarded time frame is then invoked [16] in 
order to slow R down, by defining 

Q(x, z, co) = R(x, 2, w) e+i’zw=‘o’, (4) 

where 17 is some average velocity which is determined from the velocity structure. 
This average velocity is calculated by breaking the assumed interval velocity model 
into blocks in the x and z directions and determining an average velocity in each 
block by summing the interval velocities at all grid points in the block and dividing 
by the total number. Block size can vary from data set to data set, but a typical size 
might be 5000 ft laterally by 2000 ft vertically. Q obeys the equation 

Q,, + o’SQ - T Q: + QZ, = 0, 
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where S is given by 

and is called the slowness function. Many times in finite difference approximations. 
the assumption of locally constant coefficients is made by setting 1’ = 1: in Eq. (5 ), 
I will not make this approximation. In fact, at this point. no approximations :o 
Eq. (I) have been made. Equation (5) is simply the scalar wave equation :n a 
shifted coordinate system. 

The solution to Eq. (5) now involves two problems: 

(a) differencing in depth r and 
ib) differencing in lateral coordinate X. 

DI%ERENCING IN Z 

earranging Eq. (5) gives 

Q.., + 'SQ= +eQ-.-Q.. \Y 0 1' 
(7) 

Equation (7) relates the operator 

;I=2~+W2s(.U,,) (3, 

to the first and second z-derivatives of Q. For a finite change in depth A-: the forr~~ 
of Eq. (.7) suggests trying a polynomial series approximation solution of the form 

The c,,,‘s are complex numbers to be determined, assuming that L’ is not equal to F. 
To determine the c’s, let us compare the solution in Eq. (9) to an upcoming plane 

wave solution to Eq. (5) given by 

where kt Q = - 3: Q. This solution can be verified by running it through Eq. i 5 ). It 
is valid if L = constant for a given local area of interest. 

Defining a dip angle : by 
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and a dimensionless quantity 7 by 

Eq. (9) and (10) become, respectively, 

o-(x, H + AZ, Q) = (13) 

and 

A “best” set of c’s can now be determined by minimizing the least squares error 
between Q and Q over the physical range of dips and velocities. Defining 

,s 
p--cosa, (15) 1’ 

the problem reduces to minimizing the difference between 

p=,,g, c, ($g’“‘($- ,)‘P, 

and 

P = exp iC - Y(P - 1 )I, 

over an expected physical range of ,u. 

(16) 

(17) 

THE COEFFICIENTS 

Due to (a) spatial averaging resulting from an area source vs a point source and 
receiver UI’Y~~S vs points and (b) finite spacing producing sampling rate problems, 
a reasonable limit on dips a might be from -55” to + 55”. Lateral velocity varia- 
tions may be on the order of 2:1, such as in the Wyoming overthrust belt, where 
velocities can go from 10,000 ft/s in sedimentary rocks to 20,000 ft/s in granite. 
Vertical variations may be on the order of 4:1, such as going from water at 
5000 ft/s to quartz at 20,000 ft/s. These physical limits yield the limits on 1 so that 
the minimization between Q and Q can be carried out. 

A reasonable range might be 

0.7<4)< 1.4. 
1’ (18) 
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then 

wtere k, varies over the range (0, ~/AX). The maximum value of p will be 

where L’,~~ is the minimum velocity for a given region of ir,teres::. 
The minimum value of P will be 

where d,,, is rhe maximum dip in the data. If ~c~oA.~> I, p takes on imaginary 
values. Defining ti = iv, the maximum v will be 

Consequently. the problem of determining the c”s boils down to fitting 0 to 
cxp i[ - ;:(p - l)] in the region of real p and to exp( + @] exp( +YV) in t 
of imaginary ill. 

Choosing a weighted least squares fit of @ to Q and defining the :eA and 
imaginary parts of c,,, in the following manner, 

separate expressions can be written for the ieast squares error of the real and 
Imaginary parts of Q-Q: 
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where A, and A2 are weighting functions which should be high for real p, the region 
of greatest interest. For imaginary p and p < /lmin # 0, 1 can be chosen just large 
enough so that 

Max/PI’< I, (27) 

where 
-- 

@I’=QQ*. (28) 

Equation (27) is a stability criteria to assure that energy does not grow. Treating 
E~ first, 

3 
&I = JL’ d/d,(p) 1 a,($ - 1)” -cos y(p - 1) 

0 n, 

+j’h2(v) ~a,,(-l)“‘(v2+Ij”‘-cos~e+‘~ 2 (29) 
0 m 

and 

+ (-l)‘, /~d,‘l,(e)(?+ l)“Z 1 a,,,( - 1)‘n’ (,I’+ l)“Lcos i’,+i,v . 
( 

(30) 
171’ > 

Setting the partial derivative of c1 to zero yields 

*ii/ 

c [i 
a,, 

0 

r,,(~)(~12-1)“‘+‘“‘d~+(-l)nrtm’ ~rl\‘/.,(v)(v:+l)‘“‘” J m’ 1 
[J k&f = aJ/d,(p)(p2 - I)‘,, cos y(p - 1) 

0 

+(-1)“s’ich’~2(,~)(,‘2+ l)“COS1/le+J’” . 
0 1 

In an analagous manner, 

(31) 
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+ ( - 1 yri 1’:’ d\fi.2(v)(?l’ + 1 )‘,, c b,,,.(? + I )“I - ( - 1 y sin i’ c’+i p 
“0 ,,1’ 

Setting Eq. (33) equal to zero. the following expression is obtained for the L~~,~‘s: 

^ L, ,. 
- ( - 1 )‘,’ 

J 
dvi2(v)(v2+ l)“‘sin::~e+“ i 34) 

0 

Equations (31) and (34) can be solved using Simpson’s rule to evaluate the 
integrals and then using a matrix inversion algorithm to solve for the n’s and ihe 
h’s This inversion is very fast, since 2-4 HZ’S should be sufficient. 

DIFFERENCING IN X 

A finite difference approximation is needed for the operators 

r^m = (6:. + $.q& :))“Z 5 :,jsj 

which appear in Eq. (9). One way to do this is to approximate [ by a 2t + I point 
fiber. Using the notation 

‘9 r 
t 263 Q(j4.Y) % Q,? (?A: ,. . 

we will define 

Thus, PQ p 1s re resented by applying the filter [ II! times. 
Now let us concentrate on ?‘,Q and find a 2L + 1 approximation for i;. Defining 

(3:Q)j-Q;+,-2Q,+Q~i--/. 138) 

we approximate the lateral second derivative with a polynomial series expansion 
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To help find the d’ that “best” approximates at., let us determine the coefficients 
b, when Q is chosen as a plane wave solution in Eq. (39 ). Selecting Q = eipX. 
Eq. (39) becomes 

where P is used to represent the horizontal wave number. But also, 

d;Q = - P’Q. 

Consequently, the “best” values for 6, are those which satisfy the equation 

(41) 

(42) 

over the acceptable values of P. Good choices to try for L might be 3, 5, 7, etc. 

THE LATERAL COEFFICIENTS 

Choosing a least squares fit of Eq. (40) to Eq. (41), to determine the lateral coef- 
ficients (the b’s), a number of choices are available in making the fit. Three will be 
considered in this paper. 

The first attempt is a straightforward, unconstrained least squares fit up to the 
Nyquist wavenumber, P,\,= n/Ax. We want to minimize the integral E, 

,’ b,sin’ (?)I2 dP 

with respect to the b’s. This yields 

Upon setting Eq. (44) to zero, the equation to solve for the b’s is 

(43 1 

Tests on a variety of models have shown that for much lateral variation in the 
velocity tl in Eq. (l), this set of b’s produces instabilities. 

The second attempt tried was a constrained least squares fit taking d’ = P’ up to 
some P,, and then equal to Pi up to the Nyquist wavenumber, P,v. This fit is 
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FL I. A constrained least squares fit for the second !ateiai deriiai!cc. 

showr. graphically in Fig. I. The functional E to minimize with respect fo ihe i’s 

for this case is 

The resulting equation to solve for the b’s is given by 

where B= P,A.v. This again is not a good fit, generating instabilities when G-me is 
much lateral variation in velocity. 

The third choice is a constrained least squares fit taking J’ = P’ up to some P, . 
and then fitting it to a quadratic out to Plv. This tit is iliustraied in Fig. 2. The 
functional to minimize is 

1vber.e f’(P) is a quadratic function to be determined. The conditions chosen to 

P 

FIG. 7. The chosen constrained !east squares fit for ihe second latera! derivative. 
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determinef(P) are (a) its first derivative at P,, is zero, and (b)f(P,) = Pi for some 
Ply as shown in Fig. 2. From these conditionsf(P) is found to be 

~f(P)=P:i2P,(P-P,)+(pfp:jdx) (P-P,)“. 

Upon minimization of E w.r.t. the b’s in a least squares sense, we have 

which has provided a stable fit for all tested cases. 

EXAMPLES 

From the explicit polynomial series solution in Eqs. (9) and (13) and the trans- 
formation in Eq. (4), a solution to the inverse problem (migration) can be 
immediately written down. The final migrated geophysical data are given by the 
explicit formula 

(+--2nd difference operator) 

where cl, is found from Eqs. (24). (31) and (34). D(k j is the finite difference 
approximation to the second derivative operator in x and is given by Eqs. (39) 
and (49). 

The migrated data, R(x, 2. t = O), represent reflection coefficients at boundaries of 
velocity and/or density contrasts. This reflectivity function is obtained explicitly 
from the acquired surface data, R(s, r = 0, t), by the transformation in Eq. (50). A 
computer algorithm to generate the solution in Eq. (50) would proceed as follows: 

a. Take the known record field, R(s, 0, t) and Fourier transform it: 
R(x, 0, t) + R(x, 0, 0). Note that Q(x, o, w) = Rfx, o, co). 

b. Transpose R into arrays of constant 0) (for all x and given I). 

c. Transpose S(x, zj into arrays of constant z (for all xj. 
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0 7000 

6000 

FIG. 3. Syncline (valley) model 

d. For each w 6 w,,,, continue downward 1 z-step, using Eq. (58). Continue 

if z < Zbottom > until finished. 

e. Transpose the migrated section into arrays of constant x. 

f. Final result is a migrated depth section. 

Figure 3 shows a classical earth cross section of a syncline (concave curvature) 
with a flat layer above and two flat layers below. Variations in velocity are 
primarily vertical, going from 6000 ftjs shallow to 45,000 ftjs deep, with lateral 
variations across the syncline, from 7000 to 10,000 ft/s. 

The data in Fig. 4 were generated using a ray tracing algorithm. 3%~ represents 
synthetic surface seismic data acquired by setting off a source an 

FIG. 4. Synthetic surface data from the synciine model. 
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FIG. 5. Reconstructed syncline model using the explicit finite difference solution to the wave 

equation. 
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FIG. 6. Dome model 

FIG. 7. Synthetic surface data from the dome model. 
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FIG. 8. Reconstructed dome model using the explicit finite differerce solution to the wave equation. 

primary reflected energy in receivers collocated wit the source. 1% shows the 
characteristic “bow-tie” effect for a syncline and also velocity pulMown in the 
layers underneath. Running the above algorithm on this sim d data set essen- 
tially recovers the original model, except for some areas of rsion, as shown 
in Fig. 5. 

The second model, shown in Fig. 6, is an anticline (dome) with dipping layers 
above and below the dome. Vertical velocity variations are rapid, as are lateral 
variations across the dome, ranging from 9000 to 14,000 ftt/s. 
synthetic data in Fig. 7 were generated by a wave equation modelling program. 
Notice how the dome is diffracted and spread out as seen at the surface. Also, note 
the velocity pull-up of the underneath layers. 

unning the above algorithm on the data set in Fig. 7 reconstructs a very good 
esenltation of the original model, as shown in Fig. 8. The dome has been 

effectively collapsed back to its original self, and the lower dipping layers have been 
image into their correct positions with excellent continuity. 

CONCLUSIONS 

tit finite difference polynomial series solution (Eq. (9)) to the wave 
s been formulated, and the depth and lateral differe~ci~~ 

delermined. Equation (9) can be made an arbitrarily good estimate of 
erivatives of velocity are small, and this is usually the assumption even in very 

sophisticated depth migration schemes [ 151. The reflectivity function c 
formed from this solution as shown in Eq. (50). As demonstrated by two exa 
the solution works in inhomogeneous media where velocity changes ra 
vertically and laterally. 
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